Инновационный сетевой проект
Перейти на Учительский сайт Радиной М.В.
МО учителей химии и биологии (перейти на сайт)
Темы на форуме Автор Дата

Кальций в природе встречается в виде соединений. Для обнаружения кальция к водному раствору вещества добавляют некоторое количество раствора оксалата аммония или другой соли щавелевой кислоты. (Осторожно! Щавелевая кислота и ее соли ядовиты!) При этом выпадет белый осадок оксалата кальция, который не растворяется в уксусной кислоте. Если на соединение, содержащее кальций, капнуть соляной кислоты и внести его в пламя, то оно окрасится в кирпичный цвет. Ученые с помощью спектрометра обнаруживают двойную красную и зеленую спектральные линии.
Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:54, её прочитали 9 784 раз и оставили 0 комментариев.
Из металлов побочной подгруппы II группы рассмотрим здесь только цинк. Хотя цинк активнее железа, он обладает большей стойкостью в атмосфере, так как покрыт защитной пленкой. Но цинк очень легко растворяется в разбавленных кислотах. Плотность цинка 7   г/см3,   плавится он при температуре 419 °С, а кипит при 906 °С, то есть может  испариться уже в пламени бунзеновской горелки. Раньше из цинка  изготавливали водосточные кровельные желоба, бачки для воды, ванны и т, д. Сейчас он почти полностью вытеснен из этих областей  потребления, но по-прежнему применяется для изготовления литых изделий. Так, ручки дверей и  детали отделки легковых автомашин    (например, «Вартбург») представляют собой никелированные  цинковые литые изделия. Кроме того, цинк применяют для изготовления  металлических  электродов  сухих элементов  в  батарейках карманных фонариков и анодных батареях. Из его сплавов наиболее известна латунь, которая наряду с медью содержит 18—50 % цинка. Наконец, необходимо упомянуть об оксиде цинка, который   широко используется как краска (цинковые белила).
Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:53, её прочитали 9 825 раз и оставили 0 комментариев.

Нагреем немного цинка на древесном угле в окислительном пламени паяльной лампы. Металл расплавится и при  высокой температуре начнет испаряться. Одновременно, однако, он будет сгорать с  появлением голубовато-белого пламени. На поверхности около пламени выпадет оксид цинка; в нагретом состоянии он желтого цвета,  а в холодном — белый. Для проведения пробы на цинк растворим   кусочек металла в соляной кислоте, разбавим ее и нейтрализуем  раствором едкого натра, который осторожно добавим по частям.

Выпадает студенистый осадок гидроксида  цинка Zn(OH)2, который   растворяется в избытке щелочи. При этом образуется цинкат натрия Na[Zn(OH)3]. Это соединение можно рассматривать как натриевую    соль цинковой кислоты. С другой стороны, цинк при взаимодействии   с кислотами образует соли, в которых выступает в качестве катиона. То есть, в соединениях он может быть не только катионом, но и  анионом,   и образовывать, соответственно, кислоты и основания.

Если к осадку гидроксида цинка добавить разбавленной соляной кислоты, то он растворится в ней, при этом образуется хлорид цинка. Гидроксиды с таким двойственным характером называются амфотерными. Похожим образом ведет себя, например, гидроксид алюминия.

Для обнаружения цинка осадим гидроксид цинка едким натром из раствора, содержащего цинк, отфильтруем осадок и накалим его с помощью паяльной лампы на кусочке угля, добавив несколько капель очень сильно (!) разбавленного раствора хлорида или нитрата кобальта.

Цинк обнаружится по зеленому окрашиванию пламени, которое вызовет образующийся смешанный оксид цинка — кобальта (зелень Ринманна).

Этот опыт можно провести проще. К исследуемому раствору добавим несколько капель раствора соли кобальта. Затем окунем в него полоску фильтровальной бумаги, подождем, пока впитавшийся раствор высохнет, сожжем полоску в несветящемся пламени бунзеновской горелки и прокалим золу. При наличии цинка также появится зеленая окраска. При этих схемах определений возможны помехи, если присутствуют некоторые другие элементы. Так алюминий с кобальтом дают голубой цвет, который иногда мешает определению зеленой окраски присутствующего одновременно цинка.

Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:53, её прочитали 9 708 раз и оставили 0 комментариев.
Здесь стоит остановиться на алюминии, так как он (кроме неметалла бора) единственный доступный нам среди 19 металлов этой группы. Особенность третьей группы заключается в наличии 15 редкоземельных металлов, которые помещаются в одной клетке периодической системы. Так как они обладают очень близкими свойствами, их определение представляет для аналитиков серьезную трудность. Металлы подгруппы алюминия в своих соединениях чаще всего трехвалентны, химически они довольно активны, но защищены оксидной пленкой от воздействия кислорода или других агрессивных сред.
Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:52, её прочитали 9 276 раз и оставили 0 комментариев.

Поместим полоску листового алюминия или кусочек алюминиевой проволоки в несветящуюся часть пламени бунзеновской горелки. Металл покроется плотным слоем оксида алюминия Аl2О3. Чистый алюминий плавится при 658 °С, однако в данном случае этого не произойдет, так как он защищен пленкой оксида.

Оксид алюминия плавится при 2700 °С в кислородно-водородной горелке или в электрической дуге. Переплавленный оксид алюминия обладает большой твердостью. Eгo используют в качестве синтетического корунда при производстве камней для часов.

Загрязненный корунд применяется в качестве абразива (наждак). Драгоценные камни — рубин и сапфир — состоят из оксида алюминия со следами красящих добавок (оксидов хрома, кобальта и титана). Сейчас их получают синтетически.

Оксид алюминия можно получить в виде серовато-белого порошка, если кусок алюминиевой фольги (серебряной бумаги) подержать в пламени. Фольга полностью окислится. Если тонкий порошок алюминия (он продается в качестве серебряной и золотой краски) распылить в пламени, то он воспламенится и образует искры.

Чтобы расплавить металл, положим кусочек алюминия в маленький фарфоровый тигель, который закроем крышкой для уменьшения окисления. Нагреем его на самом сильном пламени бунзеновской горелки или, лучше, в тигельной печи. Если при застывании энергично размешать расплавленный металл железной проволокой, то образуется алюминиевая крупка, которая применяется в металлургии.

Для обнаружения алюминия растворим небольшое количество исследуемого металла. Однако сделать это не так-то просто, потому что всегда присутствующая на поверхности пленка оксида защищает металл от дальнейшего разрушения разбавленными кислотами. Даже концентрированная азотная кислота (в которой растворяется большинство металлов) почти не разрушает алюминий, так как защитная способность пленки оксида под ее окисляющим действием еще усиливается. (Проверьте!) Если мы зальем алюминиевые опилки концентрированной соляной кислотой, то сначала не заметим никакой реакции. Только через некоторое время металл начнет растворяться с образованием хлорида алюминия и выделением водорода. Так как реакция экзотермична, смесь нагревается, причем растворение усиливается. Содержимое стакана может, наконец, закипеть и вспениться.


Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:51, её прочитали 9 047 раз и оставили 0 комментариев.

Чтобы не исключать из рассмотрения все редкие элементы, проведем несколько опытов с полупроводником германием. Германий стоит на границе между металлами и неметаллами. Он является полупроводником, и это свойство обуславливает его сегодняшнее широкое применение. Небольшие, специально обработанные кусочки германия используются в диодах для выпрямления электрического тока и в транзисторах в качестве усилителей тока и напряжения. Для опытов возьмем два или три испорченных германиевых диода или транзистор из негодного радиоприемника. Так как в последнее время в полупроводниковых элементах стали использовать неметалл кремний, необходимо посоветоваться со специалистом и убедиться, что наша проба действительно содержит германий. Осторожно вскроем клещами оболочку элемента. В глубине мы увидим блестящий кристаллик германия. Извлечем его тонкой отверткой. С одним или несколькими такими кристаллами проведем следующие реакции.

Опустим германий в пробирку с 5—8 мл 3%-ного раствора пероксида водорода, в который добавим несколько капель гидроксида аммония и за несколько минут доведем раствор до кипения. Германий быстро растворится, причем образуется, в основном, оксид германия (IV) GeO2.

Раствор разделим на три части. К первой порции осторожно добавим несколько капель азотной кислоты (до появления отчетливой кислой реакции). Затем вольем 5 %-ный раствор молибдата аммония и будем нагревать в течение нескольких минут. В результате образуется германиевомо-либденовая кислота лимонно-желтого цвета. Мешает этой реакции присутствие большого количества селена, мышьяка, фтора или органических кислот.

Другую часть раствора, содержащего германий, подкислим соляной кислотой и подействуем на раствор сероводородной водой. (Осторожно! Яд!) В противоположность другим элементам, в сильнокислом растворе выпадает белый осадок сульфида германия или наблюдается помутнение раствора в результате образования тонкодисперсного сульфида.

Третью пробу прежде всего нейтрализуем разбавленной уксусной кислотой. После этого будем добавлять соляную кислоту до тех пор, пока величина рН не достигнет значения между 4 и 5, в чем убедимся с помощью универсальной индикаторной бумаги. Если мы добавили слишком много кислоты, прибавим немного гидроксида аммония для частичной нейтрализации.

Далее приготовим раствор из 1 г таннина (природного продукта, применяемого для дубления) в 10 мл горячей воды. При взаимодействии растворов, содержащих германий и таннин, выпадает коричневато-белый осадок. Эта реакция очень чувствительна и, что еще важней, при соблюдении определенных условий специфична для данного элемента.

Наверное, у многих читателей возникнет вопрос, каким образом пришли к использованию столь разнообразных препаратов.

Химики должны неустанно и как можно более полно исследовать свойства и реакции различных веществ. В ходе тысяч дипломных, диссертационных и других исследовательских  работ изучается поведение элементов  и соединений по отношению к различным   реагентам. Реакции обнаружения почти всегда являются результатом   длинного ряда опытов, в котором только один приносит счастливый   результат.

рН — водородный показатель, равный отрицательному логарифму концентрации ионов водорода. Нейтральной среде (чистой воде) соответствует рН = 7. Большей кислотности среды соответствует меньшая величина рН.

Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:50, её прочитали 9 239 раз и оставили 0 комментариев.

Олово известно людям с давних времен, когда начинала развиваться   металлургия, так как бронза, которая дала название целой эпохе развития человечества, является сплавом меди и олова. Несмотря на это, олово довольно редкий элемент. Его доля в земной коре оценивается только в тысячную часть процента (как и для германия).

Правда, олово не рассеяно в горных породах, а встречается в рудах с большим содержанием металла, которые образуют прожилки в породах. Например, в Рудных горах в Саксонии олово широко добывалось еще в средние века.

Олово сейчас — ценнейший цветной металл, с которым необходимо обходиться очень бережно. Если раньше металл тратили на изготовление монет, фигурок, кубков, кувшинов и другой посуды, а также вплоть до нашего времени из него получали станиоль для закупоривания винных бутылок, то теперь олово чаще всего употребляют в виде покрытия на тонком листовом железе (белая жесть) или (в сплаве со свинцом, цинком или кадмием) в качестве припоя.

Имея кусочек чистого олова, можно изучить свойства металла. Если нагревать его в тигле, то при 200 °С в результате изменения внутренней структуры металла он превратится в серый порошок. Чистый металл плавится уже при 232 °С. Расплавим немного олова в тигле и в подходящей форме (стеклянной трубке или деревянном лотке) отольем из него палочку. При сгибании оловянной палочки мы услышим хрустящий звук — «крик олова».

Благодаря очень тонкой поверхностной пленке оксида олово довольно устойчиво на воздухе и сохраняет свой матовый, светло-серебристый металлический блеск. При нагревании расплавленного олова на воздухе постепенно образуется оксид олова. Смешанные с содой или углем соединения олова можно с помощью паяльной трубки восстановить до металла, который образуется в виде маленьких шариков.

Для обнаружения олова растворим металлическую пробу в нескольких миллилитрах азотной кислоты, которую разбавим равным количеством воды. При легком нагревании металл растворится. Осторожно! Опыт проводить только под тягой или на открытом воздухе из-за выделения ядовитого оксида азота!

При наличии олова растворение не будет полным, а появится осадок или помутнение, которые вызваны образованием нерастворимой β-оловянной кислоты.

Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:50, её прочитали 8 510 раз и оставили 0 комментариев.

В главной подгруппе V группы два элемента обнаруживают как неметаллические, так и металлические свойства. Это сурьма и висмут. Их применяют в небольших количествах в качестве добавок к сплавам.

Сульфид сурьмы содержится в горючих составах для спичек. Соединения висмута и сурьмы используются в медицине: например, бинты для перевязки ожога, мазь и порошок от ожога содержат нитрат висмута. Висмут является последним устойчивым элементом периодической системы; все элементы с большим номером радиоактивны, т. е. их атомные ядра, испуская элементарные частицы, превращаются в более легкие ядра.

Сурьму можно обнаружить или посредством длительных процессов разделения, или с помощью выделения очень ядовитого сурьмянистого водорода.

Мы удовлетворимся простой, но не всегда явной пробой. Растворим исследуемый металл, например кусочек шрифтолитейного сплава, в концентрированной азотной кислоте. (Осторожно! Ядовитые пары — работать под тягой или на открытом воздухе!)

Растворение будет неполным, возникнет белый осадок, который состоит из оксида и гидроксида сурьмы. Сольем азотную кислоту и немного подогреем осадок (также под тягой или на открытом воздухе) с концентрированной соляной кислотой. Затем разбавим водой, в случае необходимости отфильтруем и добавим сероводородную воду. (Осторожно! Яд!) В результате образуется оранжево-желтый осадок сульфида сурьмы.

Для пробы на висмут также растворим металл в концентрированной азотной кислоте. (Осторожно! Ядовитые пары!) В этот раствор медленно вольем несколько миллилитров дистиллированной воды.

Через некоторое время выделится белый осадок. Нитрат висмута реагирует с водой с образованием труднорастворимой так называемой основной соли:

Bi(NO3)3 + H2O → BiONO3 + 2HNO3

При добавлении концентрированной азотной кислоты осадок растворится, но опять выпадет при новом разбавлении водой. После частичной нейтрализации разбавленным раствором едкого натра (Осторожно!) раствор нитрата висмута дает при взаимодействии с сероводородной водой коричневый осадок сульфида висмута.                                                            

При добавлении раствора иодида калия выпадает черный осадок иодида висмута, который вновь растворяется в избытке иодида калия.

Главные подгруппы VI, VII и VIII групп выпадают из нашего рассмотрения, так как они не содержат металлов. Металлы побочной подгруппы V группы не будем рассматривать, так как их весьма трудно достать.

Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:49, её прочитали 12 494 раз и оставили 0 комментариев.

Металлы побочной подгруппы VI группы твердые, хрупкие; для них характерна очень высокая температура плавления; при взаимодействии с кислородом они образуют кислоты, соли которых называют хроматы, молибдаты и т. д.

Благодаря защитной пленке оксида хром чрезвычайно коррозионно стоек, поэтому его применяют для получения защитных и декоративных покрытий. Хром и молибден относятся к важнейшим компонентам сплавов и легированных сталей, которым они придают высокую коррозионную стойкость и механическую прочность.

Молибден и вольфрам плавятся при 2600 и 3370 °С соответственно; поэтому из них изготовляют нити накаливания и их держатели в лампах, а также сетки и аноды в электронных трубках. Наконец, уран нашел применение в качестве ядерного горючего в атомных реакторах.

Металлы этой подгруппы могут проявлять в соединениях самую различную валентность, но самые важные, конечно, соединения трех- и шестивалентных элементов.

Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:48, её прочитали 9 866 раз и оставили 0 комментариев.

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома. Соединения шестивалентного хрома чаще всего окрашены в желтый или красный цвет, а для трехвалентного хрома характерны зеленоватые тона. Но хром склонен еще и к образованию комплексных соединений, а уж они окрашены в самые разные цвета. Запомним: все соединения хрома ядовиты.

Бихромат калия К2Сr2О7 — самое, пожалуй, известное из соединений хрома и получить его всего легче. Красивый красно-желтый цвет свидетельствует о наличии шестивалентного хрома. Проведем с ним или с очень похожим на него бихроматом натрия несколько опытов.

Сильно нагреем в пламени бунзеновской горелки на фарфоровом черепке (кусочке тигля) такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 °С с образованием темной жидкости. Прогреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретет желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия К2СrО4, зеленый оксид хрома (III) и кислород:

2Сr2O7 → 2К2СrO4 + Сr2O3 + 3/2O2
Благодаря своей склонности к выделению кислорода бихромат калия является сильным окислителем. Его смеси с углем, сахаром или серой энергично воспламеняются при соприкосновении с пламенем горелки, но не дают взрыва; после сгорания образуется объемистый слой зеленой — благодаря присутствию оксида хрома (Ш)—золы.

Осторожно! Сжигать не более 3—5 г на фарфоровом черепке, иначе горячий расплав может начать разбрызгиваться. Держать расстояние и надеть защитные очки!

Соскребем золу, отмоем ее водой от хромата калия и высушим оставшийся оксид хрома. Приготовим смесь, состоящую из равных частей калийной селитры (нитрата калия) и кальцинированной соды, добавим ее к оксиду хрома в соотношении 1:3 и расплавим полученный состав на черепке или на магнезиевой палочке. Растворив остывший расплав в воде, получим желтый раствор, содержащий хромат натрия. Таким образом, расплавленная селитра окислила трехвалентный хром до шестивалентного. С помощью сплавления с содой и селитрой можно перевести все соединения хрома в хроматы.

Для следующего опыта растворим 3 г порошкообразного бихромата калия в 50 мл воды. К одной части раствора добавим немного карбоната калия (поташа). Он растворится с выделением СО2, а окраска раствора станет светло-желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50 %-ный раствор серной кислоты

Автор новостиadmin Теги новости
Новость опубликована 9-12-2009, 19:47, её прочитали 11 794 раз и оставили 0 комментариев.