Темы на форуме | Автор | Дата |
В одном из первых опытов мы разлагали воду на элементы с помощью электрического тока. Таким же образом можно разлагать соединения металлов, если пропускать через расплав соли постоянный ток.
Расплавленные соли часто обладают значительной электропроводностью. Положительно заряженные ионы металлов выделяются в электрическом поле на отрицательном электроде (катоде), а анионы — на положительном электроде (аноде). Так можно получить очень активные металлы, но при этом они не должны реагировать с воздухом или материалом электрода.
Английский химик Дэви в 1809 г. впервые получил натрий и калий путём электролиза расплава их соединений. Мы попытаемся получить таким же образом немного металлического магния.
Прежде всего для электролиза понадобится сильный источник постоянного тока. Можно воспользоваться аккумулятором с напряжением 12 В, причём не обязательно новым, так как опыт лучше всего удается при высокой силе тока, которая легко может привести к короткому замыканию и при этом испортить батарею. Также пригоден отслуживший автомобильный аккумулятор, который надо зарядить.
В качестве электролита для получения магния используем карналлит, смешанный хлорид калия — магния состава КСl * MgCl2 * 6Н2О, который встречается, например, в отбросных солях Штасфурта.
Безводная соль пригодна для электролитического получения магния благодаря относительно низкой точке плавления. Правда, чаще всего электролиты готовят искусственно, извлекая из различных магниевых минералов сначала оксид магния MgO, и затем получают из него хлорид магния MgCl2. Эту соль сплавляют с хлоридом калия и другими солевыми добавками.
В фарфоровой чашке при постоянном перемешивании и нагревании в минимальном количестве воды растворим 15 г кристаллического хлорида магния (горькой соли), 5 г хлорида калия и 2 г хлорида аммония; продолжая перемешивать, выпарим раствор досуха, нагреем остаток при температуре 300 °С, чтобы удалить из соли воду. После охлаждения разотрем соль в порошок и поместим в маленький фарфоровый тигель, который будет служить электролизной ячейкой. В качестве электродов используем угольный стержень и расплющенный гвоздь или, лучше, тонкую стальную полоску шириной примерно 10 мм. Чтобы избежать соединения магния и хлора, надо поставить между электродами разделительную стенку из асбестового картона; в нижней части ее гвоздем проделаем много маленьких отверстий. Картон перед опытом надо многократно нагреть над пламенем, чтобы удалить органические примеси.
После сборки ячейки подсоединим угольный стержень к положительному полюсу батареи, а стальной электрод — к отрицательному. Между батареей и ячейкой подключим в качестве сопротивления стальную проволоку длиной 2 м и диаметром 0,5 мм. Цепь будет разомкнута до тех пор, пока ее не подсоединят к клеммам аккумулятора.
Тигель надо нагревать самым сильным пламенем бунзеневской или стеклодувной горелки до тех пор, пока содержимое не расплавится. При этом будем перемешивать смесь стальным гвоздем или вязальной спицей. После этого уменьшим пламя и замкнем электроцепь. Через 20—30 минут прекратим опыт, выльем расплав из тигля, охладим и раздробим ножом. Мы обнаружим, особенно в околокатодном пространстве, шарики магния. Соберем их, погрузим на короткое время на фарфоровой или пластмассовой ложке в сильную соляную кислоту и бросим их тотчас в метиловый или в чистый этиловый спирт. На металле появится серебристый блеск, который, однако, на воздухе быстро тускнеет.
Никель также можно получить в виде топкого порошка, разлагая соли органических кислот. Но так как никель плохо растворяется в органических кислотах, получим метанат (или формиат) никеля, то есть никелевую соль метановой (или муравьиной) кислоты, следующим образом.
Из раствора сульфата никеля осадим, добавляя соду, карбонат никеля, который при взаимодействии с водой (гидролиз) частично переходит в гидроксид никеля. Осадок быстро отфильтруем и растворим при нагревании в 30— 50 %-ной метановой кислоте. При этом удаляется угольная кислота, и образуется метанат никеля Ni(HCOO)2, который выкристаллизовывается при увеличении концентрации раствора. (Осторожно! Метановая кислота едкая, а летучие пары ядовиты. Опыт проводить под тягой или на открытом воздухе!)
Кроме этого, можно приготовить соль с помощью реакции двойного обмена. Растворим 5 г сульфата никеля в воде и добавим раствор 4 г метаната (формиата) натрия. Соли взаимодействуют по схеме:
NiSO4 + 2NaHCOO → Ni(HCOO)2 + Na2SO4
При увеличении концентрации раствора сначала выделяется метанат никеля; легкорастворимый сульфат натрия останется в маточном растворе.
Прокаливая соль в пробирке, получим легкие крошки порошка никеля. Благодаря своей большой поверхности тонкодисперсные металлы химически очень активны. Например, порошок никеля является незаменимым катализатором при присоединении водорода (гидрирование) органическими молекулами. Пероксид водорода (как мы можем легко проверить) каталитически разлагается тонкодисперсными металлами.
В технике металлы часто получают в виде порошков (порошковая металлургия).
Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволока содержат около 99 % чистого элемента.
В большинстве же других случаев мы имеем дело со сплавами (смесями многих металлов), к которым иногда добавлены и неметаллы.
Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Общий рецепт для получения сплава: сначала расплавляют компонент с наивысшей точкой плавления и добавляют затем остальные компоненты. По этой простой схеме можно получить несколько сплавов.
Сначала сплавим свинец с оловом и получим сплав, примерно соответствующий составу припоя.
Поместим в тигель несколько граммов свинца и расплавим его. Затем добавим олово и хорошо перемешаем расплав железной проволокой. Возьмем тигель щипцами и поставим его в цветочный горшок, на одну треть наполненный сухим песком. Термометр, опущенный в тигель, покажет температуру 300—360 °С. Во время охлаждения каждые полминуты будем отмечать температуру и заносить ее в подготовленную заранее таблицу, где в левом столбце отмечается время, а в правом — температура. После полного затвердевания еще несколько минут проследим за ходом охлаждения и затем прекратим опыт.
Тот, кто хочет получить полное представление о термическом поведении сплава, должен начать опыты с чистого свинца и затем перейти к добавлению сначала небольших, а затем все увеличивающихся, точно взвешенных количеств олова. Таким образом можно снова использовать предыдущие сплавы.
Найденную взаимосвязь представим графически. На листе миллиметровой бумаги отложим на оси абсцисс (горизонтально) время, а на оси ординат (вертикально) — температуру.
Самое большое значение среди всех сплавов имеют стали различных составов. Простые конструкционные стали состоят из железа относительно высокой чистоты с небольшими (0,07—0,5 %) добавками углерода, а легированные стали получают, добавляя к железу кремний, медь, марганец, никель, хром, вольфрам, ванадий и молибден.
Мы удовлетворимся некоторыми простыми опытами. Для экспериментов по закалке возьмем отслужившие лезвия безопасной бритвы. Применим не только простые стальные лезвия, но и лезвия из нержавеющей легированной стали, такие как «Polsilver» или «Chroma».
Лезвия изготовлены из очень мягкого материала, ими нельзя, например, поцарапать стекло. Если взять лезвие пинцетом или щипцами и подержать в несветящемся пламени бунзеновской горелки, то поверхность его станет сначала желтой, затем голубой и наконец серой. Это в результате нагревания появились цвета побежалости в тонких пленках железной окалины Fe3О4. Если светло-красное раскаленное лезвие быстро погрузить в холодную воду, то слой, образовавшийся в окислительной атмосфере, отделится в виде блесток.
Сталь станет хрупкой и легко сломается при сгибании. Но зато повысится ее твердость, так что можно будет без труда поцарапать стекло. Чтобы избавиться от хрупкости, сохранив большую твердость, после быстрого охлаждения сталь «отпускают», короткое время нагревая ее при температуре 220—700 °С в зависимости от качества и целей применения.
Если на закрытой плитке или на масляной бане (Осторожно!) нагреть лезвия до 230—330 °С, мы опять увидим сначала желтый, затем коричневый, красный, голубой и, наконец, серый цвета побежалости.
Часто граммофонные иглы и лезвия безопасных бритв обрабатывают «отпуском» до желтого цвета при 230 °С, часовые стрелки — до светло-голубого при 310 °С, пилы и ножи — до василькового при 295 °С.
Исключительные механические свойства при отличной коррозионной стойкости имеют высоколегированные, и потому дорогие, хромоникелевые стали. Самую распространенную из них мы уже упоминали как сталь 18/8. Входящий в ее состав хром, образуя пассивирующую поверхностную пленку (подробнее см. в разделе «Небольшой курс электрохимии металлов»), сильно повышает коррозионную стойкость, а добавка никеля улучшает механические свойства.
В нескольких опытах убедимся прежде всего в том, что пробы из нержавеющей стали (нержавеющие лезвия, сломанные ножи) почти не разрушаются сильной азотной или серной кислотой. Однако соляная кислота, вследствие частичного разрушения защитного слоя, подвергает сталь сквозной коррозии. Чтобы перевести в раствор небольшое количество металла, обработаем в пробирке стальную пробу царской водкой. (Царская водка состоит из 3 объемных частей концентрированной соляной и 1 части концентрированной азотной кислоты. Внимание! Смесь очень агрессивна, пары ядовиты!). Затем осторожно разбавим раствор водой примерно в пятикратном размере, нейтрализуем, постепенно добавляя раствор соды, и проведем описанные выше реакции обнаружения хрома, никеля и молибдена. Часто нержавеющие стали содержат около 2 % молибдена — это дополнительно увеличивает твердость изготовленных из них инструментов.
Мы предоставляем самому читателю подвергнуть коррозионным испытаниям железные или стальные пробы различного происхождения и обработки. Для этой цели частично погрузим их в водные растворы, которые находятся на дне стеклянных сосудов (например, стеклянных банок). Рекомендуем проверить действие обычной и дистиллированной воды, соленой воды, растворов хлорида магния, аммиака, сернистой кислоты, а также разбавленных минеральных и органических кислот. В малоагрессивных жидкостях ржавчина интенсивнее всего образуется вблизи поверхности раствора, потому что здесь самое высокое содержание кислорода. Сильное коррозионное воздействие оксида серы (IV) является важнейшей проблемой при очистке промышленных отработанных газов, которые выделяются в процессе переработки угля и руд и содержат SO2.
Основополагающим звеном для понимания электрохимических процессов является ряд напряжения металлов. Металлы можно расположить в ряд, который начинается с химически активных и заканчивается наименее активными благородными металлами:
Li, Rb, К, Ва, Sr, Ca, Mg, Al, Be, Mn, Zn, Cr, Ga, Fe, Cd, Tl, Co, Ni, Sn, Pb, H, Sb, Bi, As, Cu, Hg, Ag, Pd, Pt, Au.
Так выглядит, по новейшим представлениям, ряд напряжений для важнейших металлов и водорода. Если из двух любых металлов ряда изготовить электроды гальванического элемента, то на предшествующем в ряду материале появится отрицательное напряжение. Величина напряжения (разность потенциалов) зависит от положения элемента в ряду напряжений и от свойств электролита.
Сущность ряда напряжения установим из нескольких простых опытов, для которых нам понадобятся источник тока и электрические измерительные приборы.
Металлические покрытия, «деревья» и «ледяные узоры» без тока → Химия / Практическая химия / Металлы - основа техники
Растворим около 10 г кристаллического сульфата меди в 100 мл воды и погрузим в раствор стальную иглу или кусочек железной жести. (Рекомендуем предварительно до блеска зачистить железо тонкой наждачной шкуркой.) Через короткое время железо покроется красноватым слоем выделившейся меди. Более активное железо вытесняет медь из раствора, причем железо растворяется в виде ионов, а медь выделяется в виде металла. Процесс продолжается до тех пор, пока раствор находится в контакте с железом. Как только медь покроет всю поверхность железа, он практически прекратится. В этом случае образуется довольно пористый слой меди, так что защитные покрытия без применения тока получать нельзя.
В следующих опытах опустим в раствор сульфата меди небольшие полоски цинковой и свинцовой жести. Через 15 минут вытащим их, промоем и исследуем под микроскопом. Мы различим красивые, похожие на ледяные, узоры, которые в отраженном свете имеют красную окраску и состоят из выделившейся меди. Здесь также более активные металлы перевели медь из ионного в металлическое состояние.
В свою очередь, медь может вытеснять металлы, стоящие ниже в ряду напряжений, то есть менее активные. На тонкую полоску листовой меди или на расплющенную медную проволоку (предварительно зачистив поверхность до блеска) нанесем несколько капель раствора нитрата серебра. Невооруженным взглядом можно будет заметить образовавшийся черноватый налет, который под микроскопом в отраженном свете имеет вид тонких игл и растительных узоров (так называемых дендритов).
Чтобы выделить цинк без тока, необходимо применить более активный металл. Исключая металлы, которые бурно взаимодействуют с водой, находим в ряду напряжений выше цинка магний. Несколько капель раствора сульфата цинка поместим на кусок магниевой ленты или на тонкую стружку электрона. Раствор сульфата цинка получим, растворив кусочек цинка в разбавленной серной кислоте.
Одновременно с сульфатом цинка добавим несколько капель денатурата. На магнии через короткий промежуток времени заметим, особенно под микроскопом, выделившийся в виде топких кристалликов цинк.
В общем, любой член ряда напряжения может быть вытеснен из раствора, где он находится в виде иона, и переведен в металлическое состояние. Однако при испытании всевозможных комбинаций, нас может постичь разочарование. Казалось бы, если полоску алюминия погрузить в растворы солей меди, железа, свинца и цинка, на ней должны выделяться эти металлы. Но этого, однако, не происходит.
Причина неудачи кроется не в ошибке в ряду напряжений, а основана на особом торможении реакции, которое в данном случае обусловлено топкой оксидной пленкой на поверхности алюминия. В таких растворах алюминий называют пассивным.