Инновационный сетевой проект
Перейти на Учительский сайт Радиной М.В.
МО учителей химии и биологии (перейти на сайт)
Темы на форуме Автор Дата

Лучшая древесная смола получается из как можно более сухой буковой древесины. Из других лиственных пород образуются более или менее подобные продукты, тогда как древесина хвойных пород из-за высокого содержания в ней природной смолы дает при перегонке смолу несколько иного состава.

Лучше всего нам удастся воспроизвести перегонку буковой древесины в промышленности, если мы возьмем тщательно высушенные куски дерева из старой мебели. Попробуем, например, использовать для этой цели остатки старого прабабушкиного комода, который отец только что разломал и выбросил. Кусок дерева измельчим — расколем и распилим его на кубики с длиной ребра около 1 см или щепки размером 1,5—2 см — и заполним ими свой перегонный куб.

Теперь соберем установку и включим нагрев и охлаждение. Уже через довольно короткий промежуток времени, осторожно вдыхая пары, мы почувствуем на выходе из трубки для отвода газа специфический запах паленой древесины. Этот запах, пожалуй, нельзя назвать неприятным.

Вскоре в приемнике появляются первые капли дистиллята. Из отводной трубки выходят только газы [в основном, диоксид углерода (углекислый газ) и метан]. Если поднести к отверстию этой трубки горящую спичку, их можно поджечь. В дальнейшем коксовые газы будут все время гореть сами светящимся пламенем. Поскольку они имеют сильный запах и содержат диоксид углерода, помещение необходимо все время хорошо проветривать.

Перегонка занимает не менее часа. В конце опыта нужно нагревать очень сильно, чтобы древесина обуглилась полностью. В это время отгоняется, в основном, древесная смола, образующая в приемнике белый дым. Дистиллят расслаивается на коричневатую водную жидкость в смолу. Когда перегонка прекратится, закончим опыт. Перегонный куб откроем только после охлаждения, потому что сильно нагретый древесный уголь при соприкосновении с воздухом легко самовоспламеняется.

Из 100 г древесины получается около 35 г древесного угля и 45 мл дистиллята, а остальная часть древесины превращается в газы.

Разотрем древесный уголь в порошок и насыплем в склянку. Он еще пригодится нам для обесцвечивания растворов. Именно так его используют и в промышленности, прежде всего в производстве сахара.


Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:53, её прочитали 9 113 раз и оставили 0 комментариев.

В следующем опыте заполним сосуд для коксования кусочками бурого угля размером в горошину — для этого надо измельчить брикеты. По возможности будем нагревать еще сильнее, чем при сухой перегонке древесины. В остальном же опыт полностью сходен с предыдущим.

Вскоре появится характерный запах коксующегося угля. Так же как и в предыдущем опыте, газы можно сначала поджечь, а потом они будут гореть сами. Наряду с метаном, диоксидом углерода и аммиаком (в присутствии аммиака можно убедиться с помощью стеклянной палочки, предварительно погруженной в концентрированную соляную кислоту) они содержат малое количество ядовитого оксида углерода.

В приемнике собирается коричневатая жидкость — подсмольная вода, коричневато-черная смола и сырой парафин. Последний осаждается на стенках приемника желто-коричневатым слоем. Из 250 г бурого угля получается 15—25 г смолы и сырого парафина и около 40 мл подсмольной воды.

Сосуд для коксования мы и на этот раз откроем только когда он совсем остынет, чтобы предотвратить возможное самовоспламенение. В сосуде остается так называемый буро-угольный полукокс. Как мы уже знаем, в отличие от каменноугольного кокса и буроугольного высокотемпературного кокса, он хрупок и поэтому не годится для выплавки чугуна. Однако это превосходное топливо, используемое в специальных печах для отопления помещений, а также на электростанциях. Кроме того, в газогенераторах Винклера из него получают газы, применяемые в химическом синтезе и в качестве топлива.

Дистиллят с помощью декантации разделим на подсмольную воду и смесь смолы с парафином, которую можно выскрести ложкой.

В подсмольной воде, которую мы используем для следующих опытов, содержатся, прежде всего, фенолы. Добавив к ней двойной объем этанола (годится и денатурат), можно в значительной мере отделить фенолы, так как они, в отличие от углеводородов, хорошо растворяются в спирте. В оставшейся мягкой массе наряду с небольшим количеством спирта содержатся, в основном, жидкие и твердые углеводороды парафинового ряда (алканы).

Фракционированной перегонкой из нее можно получить бензин, среднее масло, мягкий и твердый парафин. Можно использовать эту смесь и без предварительного разделения. Позднее мы будем окислять ее с целью получения жирных кислот.

Итак, как мы уже убедились, полукоксование и коксование бурого угля при высокой температуре дают горючие газы, смолу и полукокс или, соответственно, высокотемпературный кокс.

Несмотря на огромные объемы современных коксовых печей, коксовых газов явно не хватает для того, чтобы полностью обеспечить горючим газом промышленность. Поэтому на многих предприятиях, где перерабатывается уголь, из него в результате неполного окисления получают так называемый воздушный, или генераторный газ:

С + 1/2O2 → СО; Q = 122,67 кДж (29,3 ккал)

Этот газ, который, разумеется, содержит и неизмененный азот воздуха, затем сжигают:

СО + 1/2О2 → СО2; Q = 283,45 кДж (67,7 ккал)

Неполное сгорание угля с образованием оксида углерода — «угарного газа», СО — независимо от нашего желания всегда может происходить в любой печи, если она не вовремя закрыта. Угарный газ очень ядовит, отравление им приводит к несчастным случаям.

В промышленности сырой бурый уголь или полукокс газифицируют в крупных газогенераторах. В наши дни для этого применяются аппараты непрерывного действия. В той зоне газогенератора, куда подается воздух, вначале уголь сгорает полностью с образованием диоксида углерода СО2. В расположенном выше слое угля, нагретом сверх 1000 °С, СО2 вследствие недостатка кислорода восстанавливается до СО. Весь процесс в целом происходит самопроизвольно, так как неполное сгорание углерода по приведенному выше уравнению тоже осуществляется с выделением тепла. Этого тепла достаточно для того, чтобы поддерживалась требуемая высокая температура угля.

Напротив, образование водяного газа требует дополнительного подвода тепла. Водяной газ образуется при действии водяного пара на раскаленный уголь:

С + Н2О ↔ CO + H2; Q= — 221,06 кДж (—52,8 ккал)

Водяной газ в настоящее время производится тоже, в основном, на установках непрерывного действия, причем благодаря подаче чистого кислорода часть угля сгорает, так что общий тепловой эффект положителен.

Водяной газ — это смесь оксида углерода с водородом, которая может содержать и диоксид углерода. Для обычного отопления водяной газ слишком дорог. Ввиду высокой теплоты сгорания его применяют для получения очень высоких температур (для сварки), а также в качестве ценной добавки к бытовому газу. Водяной газ служит одним из важнейших видов сырья в промышленном органическом синтезе. В качестве так называемого синтез-газа он применяется для получения бензина и метанола. Кроме того, из водяного газа получают водород для синтеза аммиака.

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:53, её прочитали 9 609 раз и оставили 0 комментариев.

Все мы знакомы с карбидом кальция. При действии воды он образует горючий газ, используемый для так называемой автогенной сварки. В былые времена газовые лампы, заряженные карбидом, использовались в велосипедных фонарях и даже в мотоциклах и автомобилях. Сейчас такие лампы стали музейными экспонатами.

Формула карбида кальция — CaC2. Он образуется из негашеной извести и кокса при температуре порядка 2000 °С:

СаО + 3С → СаС2 + СО

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:52, её прочитали 9 250 раз и оставили 0 комментариев.

У металлов очень древняя история. Например, история меди насчитывает 7700 лет, а предметы из железа и стали были известны 4000 лет назад в Китае, Индии, Вавилоне и Ассирии. В отличие от металлов, синтетические материалы — пластмассы, синтетические эластомеры — каучуки и резины, химические волокна, силиконы — начали производить немногим более 50 лет назад. Несмотря на это, они во многих отношениях превосходят давно известные материалы.

Правда, у каждого из них, как и у природных материалов, есть свои недостатки, и при выборе, разумеется, приходится их учитывать и сопоставлять с достоинствами. Главное преимущество пластмасс по сравнению с металлами заключается в том, что их свойства легче регулировать. Поэтому пластмассы быстрее и лучше можно приспособить к требованиям практики. К преимуществам пластмасс относятся также низкая плотность, отсутствие у большинства из них запаха и вкуса, высокая стойкость по отношению к атмосферной коррозии, к кислотам и щелочам. Кроме того, изделиям из пластмассы легко можно придать любую форму. Наконец, большинство пластмасс превосходно поддается крашению и обладает отличными электро- и теплоизоляционными свойствами. Зато устойчивость к высоким температурам и нередко прочность у них меньше, а тепловое расширение обычно больше, чем у металлов. Кроме того, некоторые пластмассы горючи.

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:50, её прочитали 7 733 раз и оставили 0 комментариев.

В тяжелые времена, в годы бедствий и потрясений создавались так называемые «эрзацы» - заменители отсутствующих веществ.

Например, в первую мировую войну вместо тканей из шерсти и хлопка были предложены ткани из бумаги. Во время второй мировой войны появилось такое мыло из глины, у которого не было ничего общего с обычным мылом, кроме названия и формы кусков. Разумеется, это были очень плохие заменители.

Тогда синтетические материалы тоже должны были служить    заменителями. Из-за отсутствия выбора часто приходилось использовать такие типы пластмасс, которые для данного случая не подходили или не были доведены до требуемого качества и достаточно проверены. Конечно, все это повредило репутации синтетических материалов. Однако в наши дни их уже нельзя рассматривать просто как заменители.

Правда, они и теперь часто применяются вместо природных материалов, но тогда, когда существенно превосходят их. Если вначале опыт работы с синтетическими материалами бывал неудачным, то причиной чаще всего было их неправильное использование. Многие инженеры старой школы считали новые материалы неполноценными. Во всех неудачах у них всегда был виноват, конечно, заменитель.

В наши дни практика заставила многих скептиков отказаться от своих прежних взглядов. Приведем лишь один пример. Вкладыши подшипников для сельскохозяйственных машин, для гребных валов, прокатных линий и вагонов сегодня могут изготавливаться из фенопластов. Они намного легче бронзовых или из сурьмянистого свинца - плотность фенопластов составляет приблизительно 1,7 г/см3, а бронзы - 8 г/см3. Кроме того, они долговечнее, и смазкой для них может служить вода. В прокатных станах вкладыши подшипников из фенопластов работают в 120 раз дольше, чем из сурьмянистого свинца.

Шарики из фенопластов превосходно зарекомендовали себя при испытании в течение двух лет в карданных механизмах трамваев в Дрездене.


В высокоразвитой химической промышленности Германии производству синтетических материалов принадлежит особое место.

Главное внимание уделяется изготовлению наиболее цепных типов пластмасс, а важнейшей задачей считается все более полное использование тех многообразных возможностей, которые предоставляет недавно созданная нефтехимическая промышленность.

Наряду с давно известными пластиками, служащими для изготовления предметов широкого потребления, промышленность выпускает все больше новых пластмасс специального назначения. В среднем 70-80 % стоимости всей выпускаемой продукции приходится на долю материалов. Непрерывный научно-технический прогресс, автоматизация производства и повышение производительности труда как сейчас, так и тем более в будущем - немыслимы без новых материалов. В самом деле, борьба за экономию материалов тесно связана с применением полимеров во всех отраслях народного хозяйства. Ведь пластмассы гораздо легче поддаются обработке, чем катаная сталь, и при их переработке получается меньше отходов. Но преимущество пластмасс не только в этом. Пластмассовые детали машин и аппаратов легче, устойчивее к коррозии и обычно дешевле.

Можно не сомневаться в том, что в будущем соотношение между использованием пластмасс и конструкционной стали существенно изменится в пользу пластмасс.

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:49, её прочитали 6 805 раз и оставили 0 комментариев.

«За свою продукцию ручаюсь головой», - эти слова сегодня часто можно услышать на предприятиях. Однако готовую продукцию высокого качества можно изготовить только из безупречных исходных материалов. Поэтому пластмассы всегда подвергают очень тщательному испытанию. Результатами этого строгого экзамена интересуются обе стороны - и те, кто производят пластмассы, и те, кто занимаются их переработкой. Первые всегда стремятся улучшить качество выпускаемой продукции, а вторым важно выяснить, какие материалы можно использовать для тех или иных целей.

В число этих испытаний входят измерение прочности на растяжение, твердости, прочности на изгиб, эластичности, паро- и газопроницаемости, прочности к истиранию, плотности, водопоглощения, исследование поведения при нагревании, воздействии света и в электрическом поле. Наряду с этим важнейшую роль играет изучение стойкости пластмасс по отношению к различным химическим реактивам.

У читателя, вероятно, найдется образец какой-нибудь пластмассы для исследования. Сначала выясним, из чего она состоит, как называется и для чего используется. Ответить на эти вопросы не всегда легко.

Некоторые сведения мы могли бы получить, определив химический состав. С этой целью нам понадобилось бы поместить в пробирку 100-200 мг исследуемого сухого образца и расплавить его вместе с металлическим натрием, нагревая пробирку почти до размягчения стекла. Плав мы могли бы потом растворить в воде и в полученном растворе обнаружить:

азот - при добавлении сульфата железа (II), хлорида железа (III) и разбавленной соляной кислоты (образование берлинской лазури);

серу - при действии пентацианонитрозилферрата (Ш), или нитропруссида натрия (фиолетовое окрашивание);

хлор - при действии нитрата серебра в присутствии азотной кислоты (осадок хлорида серебра, обнаружению мешают некоторые азотсодержащие соединения);

фосфор - при добавлении азотной кислоты, упаривании раствора и последующем действии молибдата аммония, (желтый осадок).

Однако многим читателям металлический натрий недоступен. Кроме того, ввиду опасности работы с ним, начинающим химикам не стоит проводить анализ этим методом. Вместо этого ограничимся более простым определением хлора - пробой Бейльштейна, которая нам уже знакома. Для этого раскалим медную проволоку в несветящейся зоне пламени горелки Бунзена до исчезновения зеленого окрашивания. На конце этой проволоки внесем в пламя горелки пробу исследуемой пластмассы. Если она содержит хлор или другие галогены, то образуются летучие галогениды меди, которые окрашивают пламя в интенсивный зеленый цвет.

Для большинства обычно применяемых пластмасс нам удастся решить поставленную задачу даже в том случае, если мы ограничимся только определением плотности, температуры размягчения и плавления, пробой на сгорание, а также исследованием кислотности продуктов разложения и поведения пластмассы по отношению к некоторым химическим реактивам.

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:49, её прочитали 6 359 раз и оставили 0 комментариев.

Взвесим образец пластмассы, не содержащий пузырей, определим его объем по вытеснению воды или путем непосредственного измерения и вычислим плотность (в г/см3), пользуясь формулой:

ρ = m / V

где m - масса образца, г; V - объем образца, см3.

В случае смесей различных типов пластмасс или пластмасс с добавками - наполнителями - полученные значения колеблются в некоторых пределах.

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:48, её прочитали 7 590 раз и оставили 0 комментариев.

Сначала выясним, плавится ли исследуемая пластмасса вообще. Для этого внесем ее в струю горячего воздуха, нагретого горелкой, или нагреем исследуемый образец на металлической или асбестовой подставке. В зависимости от того, что будет происходить с пластмассой, мы сможем отнести ее к термо- или реактопластам. Правда, не исключено, что наш образец не относится ни к одной из этих групп. Об этом мы поговорим позднее.

Температура размягчения

Вставим пробы пластмассы - лучше всего полоски длиной 5-10 см и шириной 1 см - в железный тигель, заполненный сухим песком. Тигель постепенно нагреем маленьким пламенем горелки. В песок вставим термометр. Когда полоски согнутся, по показаниям термометра заметим температуру размягчения. Для измерения температуры размягчения можно использовать и химический стакан, заполненный маслом. (Осторожно! В горячее масло не должна попадать вода! Исключить опасность разбрызгивания!)

Для поливинилхлорида, у которого температура размягчения составляет 75-77°С, и для полистирола с температурой размягчения 80-100 °С вместо масла можно обойтись водой.

Температура текучести

Аналогично можно определить и температуру текучести, т. е. тот интервал температуры, в котором пластмассы приобретают текучесть. Однако напомним, что некоторые пластмассы разлагаются раньше, чем достигается температура текучести.

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:48, её прочитали 5 838 раз и оставили 0 комментариев.

Возьмем тигельными щипцами образец пластмассы и поместим его ненадолго в верхнюю часть высокотемпературной зоны пламени горелки. Вынем пластмассу из пламени и посмотрим, будет ли она гореть дальше. При этом обратим внимание на цвет пламени; заметим, образуется ли копоть или дым, потрескивает ли огонь, плавится ли пластмасса с образованием капель. Ошибки в определении типа полимера могут возникать из-за того, что мы исследуем не чистую смолу, а с добавками - пластификаторами и наполнителями. К сожалению, свойства этих добавок иногда оказываются заметнее свойств чистого полимера.

Исследование продуктов разложения

В маленьких пробирках нагреем измельченные пробы различных пластмасс и обратим внимание на запах, цвет и реакцию на лакмусовую бумагу образующихся продуктов разложения. (Нюхать осторожно! Некоторые пластмассы, например политетрафторэтилен, образуют ядовитые продукты разложения.)

Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:47, её прочитали 6 349 раз и оставили 0 комментариев.
Пробы пластмасс погружают в разбавленные и концентрированные растворы кислот и щелочей - на холоду или при нагревании, обрабатывают органическими растворителями и таким образом испытывают их на химическую стойкость. Для изучения набухания вырежем прямоугольный кусочек пластмассы и острым скальпелем сделаем тонкий срез. Полученную тонкую пленку раздвоим, как показано на рисунке. Половину этой пленки погрузим в пробирку с соответствующей жидкостью. Исследуем набухание в различных жидкостях: — в воде, кислотах, щелочах, бензоле, метилбензоле (толуоле) и др. Пробирки оставим по меньшей мере на 5 дней. (Учесть пожароопасность некоторых растворителей!) Чтобы жидкость меньше испарялась, заткнем пробирки кусочками ваты. В некоторых случаях, например для поливинилхлорида (ПВХ) в бензоле, мы обнаружим заметное увеличение той части полоски, которая находилась в растворителе. Если образец становится хрупким, то это скорее всего вызвано вымыванием пластификатора. Пластификаторами обычно служат сложные эфиры.
Автор новостиadmin Теги новости
Новость опубликована 8-12-2009, 12:46, её прочитали 7 001 раз и оставили 0 комментариев.